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Environmental Verification Objectives

The fundamental purposes of an environmenta]
verification and test program:

* to quality designs for launch and in-service
conditions.

* to simulate the launch environment.

* to screen flight hardware for manufacturing
workmanship defects.

* demonstrate the quality and reliability of a design.

* demonstrate its suitability for the intended purpose
Or mission.
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Test Sequencing

To accurately simulate the Space environment sequence,
tlight hardware testing should be performed as follows:

1. Dynamic testing (in order as required)
* sinusoidal vibration

* transient vibration
* pyroshock
* acoustics

2. Thermal-vacuum testing
* temperature dwell
* temperature cycling
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Space Environmental Test Program Process

RELIABILITY ENGINEER
D-10658, SEC 8 ENVIRONMENTAL
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oG TEST
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COGE COGE
JPL 900-434 ENVIRONMENTAL
MIL-STD-462 TEST
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TEST AGENCY JPL FPP 13-05-2
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LEVIES
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A Typical Test and Analysis Configuration List

Random | Acoustic| Pyro | Thermal | VIMT EMC | Mag.
Vibration 1
Spacecraft X X X X X
Propulsion X X X
Subsystem
Main Engine | X X
Assembly |
Engine | X X
Gimbal Assy |
Gimbal | X X X
Actuators
Gimbal X X X X X
Drive
Electronics

This list can be as exhaustive or comprehensive as the program requires.
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Environmental Design & Test Requirements

* Typical baseline space requirement depends on
launch vehicle, spacecraft systems, etc.

- * Launch Environment for both design and test
(includes prelaunch operations, liftoff, and
ascent) are as follows:

* thermal conditions

* deep space vacuum

® insertion pressure decay

* random and sinusoidal vibration
* pyrotechnic shock

® acoustic noise
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Thermal

Spacecraft MEMS should operate over the following
temperature ranges (whichever is more extreme):

®-55°Cto +70 °C

or

® 20 °C of flight allowable

Definitions:
1. Operating Allowable Flight Temperatures - Temperature ranges when powered-on in a worst
case operational mode (hot or cold).
2. Non-Operating Allowable Flight Temperatures - Temperature ranges when powered-off in a
worst case non-operational mode (hot or cold). MEMS devices must be capable of returning to
in-spec operation as temperatures return to Operating Allowable Flight levels.
Design Temperature Limits - Temperature limits for all functional and performance specifications.
Stabilization Temperature - A temperature at which the rate of change of its largest centrally
located thermal mass is less than 2 °C per hour.
Control Temperature (Thermal/vacuum Conductive Heat Transfer Tests) - The temperature of the
heat exchanger plate midway between input and output of heat exchange fluid.
Control Temperature (Thermal/vacuum Radiative Heat Transfer Tests) - The temperature of the
major temperature control surface of the assembly (e.g. radiator).

N U AW
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Thermal Radiation Levels

Allowable flight temperatures durin

g the mission under exposure

to the applicable worst case expected thermal radiation levels
should not exceed the following:

Mission Phase Direct Solar

lgg

j

Reflected Solar Planetary IR
(Albedo) (LW Radiation)
0 to 1400 W/m2 0 to 0.32 100 to 270 W/m2
(5770K effective 0 to 450 W/m2 (206K to 262K effective
blackbody (global annual mean) blackbody temperature)
temperature) 0 to 0.70 W/m?2

(polar regions)

0 to 1400 W/m2
(at earth
perihelion)

f
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Negligible beyond 4
earth radii

Negligible beyond 4
earth radii
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Yacuum Pressure Decay

® The design pressure for a typical mission can be expected to decrease from 101325 N/m?2 (760 Torr)

on Earth to 1.33 x 10~3 N/m2 ( 1x1073 Torr) in deep space.

* A typical launch pressure decay rate, showing launch vehicle internal fairing pressure versus time, is
provided by the following:
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* Assemblies affected by launch pressure decay should be designed with a recommended structural
design factor of 1.0 on yield and 1.4 on ultimate if tested, or 1.6 on yield and 2.0 on ultimate if not.
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Quasi-Static Accelerations

* Quasi-Static Accelerations are generated by rocket motor-
induced forces and other external forces which change slowly

with time and for which the elastic responses are relatively
small.

* Typical assembly design requirements for quasi-static
acceleration environments are provided by the following:

__ | Acceleration (g)

Lateral

* Qualification testing of MEMS for the quasi-static acceleration
environment can be performed in a centrifuge.

e Or, a low frequency sine vibration test, conducted on an
electrodynamic shaker, can often be substituted for the
relatively expensive centrifuge trial.
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Sinusoidal Vibration

e Simulates the effects of significant flight environment launch

transients, below =40 Hz.
e Sinusoidal vibration levels can be derived from the following example:

Step 1. Create analytically derived transient Step 2. Compute the shock spectra for each of the
waveforms from various flight events: waveforms in Step 1:
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Sinusoidal Vibration (cont.)

Step 3. Take data from previous flight measurements: Step 4. Combine results from steps 2, and 3 and
envelope:
| 1 L
f—{ === Station 1, Top = \\-
—— = Station 1, Bottom \% [~ .‘\. . -
————  Station 2, Top \\u\\ u\\nlil J\\\l - ~
B Station 2, Bottom - 7 7 =" .
“HVAND; | \[ T v
s 1 - N e [1 AT A ]
g ’ v S Acceleration \ V P \
.m \w s \\||l|\...... @) \ \
m \\\\ \\!I\I’ [ e ] \ \ \\ /ll\
g | 7
i
]
Frequency (Hz)
Frequency (Hz)

MEMS Reliability and Qualification Workshop II KFMan 8/4/98



ARPL

Sinusoidal Vibration ( cont.)

Step 5. Convert to a sine amplitude equivalent vs.
Frequency by dividing shock response spectrum P
envelope in step 4 by q:

Peak Acceleration (G)
n

Frequency (Hz)

Space MEMS should be subjected to a set of swept sinusoidal vibration requirements similar to those shown below:

‘Spacecraft-Level Assembly-Level
Frequency Level (Gs) Frequency Level (Gs)
(Hz) (Hz)
5-10 1.0 cm DA** 5-20 1.9 cm DA*
10 - 100 2.0 (0 - peak) 20- 100 12.0 (0 -
peak)
100 - 200 1.0 (0 - peak) 100 - 200 3.0 (0 - peak)

**DA: double amplitude displacement

Sweep rate: Qual: 1 octave per minute, once up or down in each of three orthogonal axes.
ProtoF test: 2 octaves per minute, once up or down in each of three orthogonal axes.
Acceptance:  same as protoflight.
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Random Vibration

e It is caused primarily by acoustic noise in the payload fairing at launch, which is in
turn induced by external aerodynamic forces due to dynamic pressure and reflection
of rocket exhaust from the ground.

* Random vibration criteria should be developed by the process described in the
following four steps:

1. Determine the Power Spectral Density (PSD). 2. Perform an analysis to predict the payload/flight
article's vibration response to the launch
vibroacoustic environment.
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Random Vibration (cont.)

3. Establish a minimum level of vibration for 4. Envelope the curves from steps 1-3 to produce a
workmanship screening. composite random vibration specification for the test
article, as illustrated below.
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Random Vibration Specifications

Recommended random \%1

bration environments for both spacecraft
and assembly-level testin

g are specified in the following table:

Spacecraft-Level Assembly-Level
Frequency Level Frequency Level
(Hz) (Hz)

20 - 45 +10 dB/octave 20- 80 +6 dB/octave
45- 600 0.06 g2/Hz 80 - 1000 0.25 g2/Hz
600 - 2000 6 dB/octave 1000 - 2000 -12 dB/octave
Overall _7.7 grms Overall 17.6 grms

Duration:
Design: 3 minutes in each of 3 orthogonal axes
ProtoF test: 2 minutes in each of 3 orthogonal axes
Acceptance:

MEMS Reliability and Qualification Workshop II
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Acoustic noise

* Acoustic noise results from the propagation of sound pressure waves
through air and other media.
* Acoustic noise is generated by:
e release of high velocity engine exhaust gases during the launch of rocket,
* the resonant motion of internal engine components,
e the aerodynamic flow field associated with high speed vehicle movement
through the atmosphere. .
* Acoustic energy is the primary source of vibration input to a space
launch vehicle. |

® Acoustic energy gets transmitted to the mission payload in two ways:

e the fluctuating pressures within the payload fairing impinge directly on
exposed spacecraft surfaces, inducing vibration in high gain antennae,
solar panels and other components having a large ratio of area-to-mass.

* the fluctuating external pressure field causes an oscillatory response of the
rocket structure, which is ultimately transmitted through the spacecraft
attachment ring in the form of random vibration.
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Typical Acoustic Specification
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Typical Acoustic Noise Requirement
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Calculation of Overall Sound Pressure Level (OASPL)

Center Frequency SPL (dB) Pressure P (Pa) Squared Pressure

315 122.0 25.2 633.9
40.0 124.0 31.7 1004.6 M
50.0 126.0 39.9 15922 ]
63.0 1275 47.4 2249.1 )
80.0 129.5 59.7 3564.5

100.0 130.5 67.0 44875

125.0 132.0 79.6 6338.7

160.0 133.0 89.3 7979.9

200.0 1335 94.6 8953.6

250.0 134.0 100.2 10046.2

315.0 134.5 106.2 11272.0

400.0 1345 106.2 11272.0

500.0 134.0 100.2 10046.2 B
630.0 133.5 94.6 8953.6 ]
800.0 1330 893 7979.9

1000.0 132.0 79.6 6338.7 B
1250.0 131.5 75.2 5649.4

1600.0 130.0 63.2 39994

2000.0 129.0 56.4 3176.9

2500.0 128.0 50.2 25235

3150.0 126.5 423 1786.5

4000.0 125.0 35.6 1264.7

5000.0 124.0 31.7 1004.6

6300.0 122.5 26.7 711.2

8000.0 121.0 224 5035

10000.0 120.0 20.0 399.9

RSS Pressure = 351.8 Pa

20 log(351.8/2E-5) = 144.9 dB
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Acoustic Noise Envelope Encompassing Three Launch Vehicles
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Envelope of Acoustic Flight Data

At the subsystem level, acoustic testing is generally not conducted for
space MEMS due to their low ratio of area-to-mass.
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Typical Acoustic Noise Test Levels

Frequency F.A. SPL Qual SPL Tolerance

(Hz) (dB ref 20 UPa)| (dB ref 20 uPa) (dB)

31.5 129.0 132.0] +6, -3

40 131.0 1340/ +5,-3

50 132.5 135.5] 45,3

63 134.0 137.0] +5, -3

80 135.0 138.0] +4, -3
100 135.5 138.5 13
125 136.0 139.0 13
160 136.0 139.0 13
200 135.5 138.5 13
250 135.3 138.3 13
315 135.0 138.0 13
400 134.0 137.0 +3
500 132.0 135.0 +3
630 130.5 133.5 13
800 129.0 132.0 +3
1000 126.5 129.5 +3
1250 125.0 128.0 +3
1600 123.0 126.0 13
2000 121.0 124.0 +3
2500 119.0 122.0 13
3200 117.0 120.0 13
4000 115.0 118.0 13
5000 113.0 116.0 13
6400 111.0 114.0 13
8000 109.0 112.0 +3
10000 - 107.0 110.0 13
OASPL 145.8 148.8 +1

MEMS Reliability and Qualification Workshop 11 KFMan 8/4/98



APL

Pyrotechnic Shock

* Pyrotechnic Shock is associated with the firing of an explosive device.

* A typical pyrotechnic shock requirement is illustrated in the figure
below:
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Another Possible Pyrotechnic Shock Environment Requirement

* The shock input is applied at the assembly mounting points in each of 3
orthogonal axes.

® This spectrum represents a 2g environmental level, intended to encompass
95% of all expected shock environments for all available launch vehicles.
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Actual Pyrotechnic Shock Spectrum

The figure below illustrates a typical acceleration versus The figure below illustrates a typical measurement of

time trace from an actual pyrotechnic shock actual the frequency-domain response
pyrotechnic shock event.
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MEMS should be tested to the shock spectrum (Q=10) as shown below:

Recommended Shock Test

FREQUENCY ACCEPTANCE PROTOFLIGHT
(Hz) (G PK) (G PK)
100 40 60
100-1500 9.2 dB per Octave 9.2 dB per Octave
10000 2500 3750

Shock Response Spectrum (Q=10)
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